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Introduction
Agricultural productivity and its variation across time and space 
plays a fundamental role in many theories of human social and 
cultural evolution (Currie et al., 2015). Because agricultural soci-
eties are characterized by higher population densities, compared 
to hunter-gatherer societies, the transition from foraging to agri-
culture fueled a series of population expansions world-wide, 
which spread the farmers’ culture, language, and genes with them 
(Bellwood, 2005; Diamond and Bellwood, 2003; Renfrew, 1992; 
Reich, 2018; Shennan, 2018). Adoption of a farming way of life 
is also central to many theories about how large-scale complex 
societies evolved over the past 10,000 years. According to these 
theories, agricultural systems allowed for “surplus” production, 
which enabled an extensive division of labor and the appearance 
of artisans, artists, specialized managers, and governing elites 
(Johnson and Earle, 2000; but see also Meller et al., 2018).

However, although the Neolithic Revolution was one of the 
most consequential transitions in human evolution, we lack sys-
tematically collected quantitative estimates of the productivity of 
past agricultural systems on a large enough scale. In particular, by 
how much did the adoption of agriculture increase human carry-
ing capacity, the maximum population density a particular envi-
ronment can sustain indefinitely, without depleting critical 

resources needed for survival and reproduction (for a review, see 
Cohen, 1995)? Even more importantly, how did agricultural pro-
ductivity/carrying capacity among agrarian populations vary over 
time (as new technologies were invented and spread, and as a 
result of climate change) and in space (between geographic 
regions characterized by different soils, landscapes, and climate)? 
It is this latter question that we begin to address here.

The relationships between crop yields, weather, and climate 
have been the focus of a great deal of attention in the Earth system 
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science literature. This is due to concerns about securing food 
supplies for our growing populations and the potential challenges 
that climate change poses (Oyebamiji et al., 2015). Most studies 
have been concerned with establishing the current relationships 
between climate and crop yields, or making projections about 
changes in crop yields due to future climate change rather than 
extending this approach back into the past (Tóth et al., 2012). 
Where historical information is used, it tends to be on a relatively 
recent time scale. For example, Ramankutty and Foley (1999) 
project geographic distribution of permanent croplands on a 
global scale from 1992 back to 1700 (but don’t offer estimates of 
cropland productivity).

More recently, researchers have attempted to infer the location 
and intensity of agricultural production during the Holocene on a 
global scale (Goldewijk, 2005; Kaplan et al., 2011). These 
approaches are ultimately derived from estimates of past popula-
tion sizes (e.g. McEvedy and Jones, 1978) and make assumptions 
about how human populations use land for agriculture. Although 
such studies should be applauded for their ambitious scale, they 
have a number of features that make them less-than-ideal for our 
purposes. First, in order to test certain theories it is desirable to 
separate out achieved production and realized population density 
from potential production and carrying capacity (i.e. the popula-
tion that could theoretically be supported). A number of interest-
ing hypotheses about human social and political evolution invoke 
“population pressure” as a key variable in causing changes in 
human societies (i.e. how close actual population is to potential 
population, and the stresses induced when there is competition for 
land and resources). For example, demographic-structural theory 
(Goldstone, 1991; Turchin and Nefedov, 2009), argues that state 
instability and societal collapse is a result of the pressures on 
resources from population growth, which, in turn, leads to popu-
lation decline. Boserupian models of agricultural change see agri-
cultural innovations themselves as resulting from population 
pressure (Boserup, 1966, 1981). Second, this approach does not 
make full use of the historical and archaeological information 
about past agricultural systems that could potentially inform esti-
mates of productivity. Finally, the data on past populations are 
often quite imprecise (and sometimes just guesswork) and are 
typically made at the coarse-grain level of a province or whole 
country (Boyle et al., 2011). Additionally, realized population 
densities can be a very poor guide for crop productivities, because 
they are affected by many other factors than agriculture. For 
example, the provision of security from violence by large-scale 
territorial states allows a greater proportion of land to be culti-
vated and can increase population densities by a factor of 3–4 
(Bennett, 2015, 2020; Turchin, 2003).

More localized studies have achieved a greater degree of suc-
cess with incorporating historical or archaeological information 
into crop productivity estimates. For example, Nicholas (1989) 
developed assessment of changes in agricultural productivity in 
pre-contact Oaxaca, Mexico, based on ecological features of the 
landscape and changes in productivity of maize due to artificial 
selection. Goodchild (2013) used GIS techniques to model the 
distribution of agricultural productivity in the Roman Republican 
period using historical information about yields of important 
crops in different environments. The approach taken in this paper 
attempts to merge these two kinds of approaches.

For a comprehensive empirical test of various theories of 
social and cultural evolution (see Turchin et al., 2015) we need, 
ideally, such estimates spanning all major world regions and time 
since the invention of farming. In a previous publication (Currie 
et al., 2015) we outlined an empirically informed framework for 
deriving such estimates for a set of past societies that together 
constitute the Seshat sample of NGAs (the World Sample-30; 
(Turchin et al., 2018)). Here we report the results of this multi-
annual multi-investigator research project. We emphasize, 

however, that the estimates that we have produced so far should 
be thought of only as initial approximations, which need to be 
refined in future research by us and other investigators. Our goal 
in presenting these quite preliminary results is to serve two impor-
tant purposes; firstly to accelerate the ultimate development of 
better models through review, criticism, and collaboration with 
the present framework, and secondly to demonstrate which 
observed effects can already be reproduced with a minimal model.

This article is organized as follows. The Methods section pres-
ents a conceptual framework for estimating agricultural produc-
tivity in the past and provides information on various components 
that go into the estimates. The Results and Discussion section 
describes these estimates, and the diversity of intensification tra-
jectories followed by societies in the Seshat World Sample-30, 
spanning all major world regions and going back to the origins of 
agriculture. The Conclusion, once again, emphasizes the limita-
tions of the current estimates, highlights the gaps in our knowl-
edge of past agriculture production practices, and outlines a 
research agenda for addressing these issues.

Methods
The general idea underlying the proposed integrative approach is 
to take account of multiple processes and factors that can affect 
crop yields, and then document how they change with time. The 
first set of factors we need to know about is the production tech-
nologies: the focal cultivar, the cropping system (most impor-
tantly, what proportion of arable land is under cultivation at any 
given time), and whether fertilization and/or irrigation is prac-
ticed. Second, crop yields are affected not only by production 
practices but also by cumulative effects of artificial selection that 
produced higher-yielding crop varieties over time. Third, crop 
yields fluctuate in response to climate, which has changed over 
the past millennia. Putting together the temporal sequence of crop 
yield improvements resulting from better technologies and esti-
mated climate influences gives us a time-series of relative changes 
in overall crop yields. To translate this Relative Yield Coefficient 
(RYC) into absolute yields expressed in (metric) tonnes per hect-
are, we need to “anchor” the time-series in a historical estimate of 
crop yields for the focus area. The translation of relative yields 
into absolute ones is an important step, because we are interested 
not only in when and how much productivity increased in a par-
ticular spatial location, but also in comparing productivities 
across space (between different geographic locations). Further, 
absolute yields are key to translate productivity measures into 
estimates of potential carrying capacity. Finally, we use additional 
historical yield estimates, if available, and FAO (Food and Agri-
culture Organization of the United Nations) data on modern 
yields as a check of the method (see Figure 4 below for a flow 
chart summarizing the inputs and outputs of the procedure). The 
rest of the Methods section deals with each of these factors in turn 
and then explains how they were put together to estimate yields.

Production technologies
We took data on production technologies from the Seshat: Global 
History Databank, an interdisciplinary project which brings 
together data on archaeological and historical variables in order 
to allow comparative analysis of human social evolution (Fran-
çois et al., 2016; Turchin et al., 2015). The agricultural data in the 
databank currently features codified information on the past 
10,000 years for thirty bounded geographic regions, termed Nat-
ural Geographic Areas (NGAs), selected to provide global  
geographic coverage as well as encompassing a range of histori-
cal societies, from small-scale societies to chiefdoms, states, and 
empires. The databank also contains coded data relating to  
more than 1000 variables, spanning themes including social 
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complexity, agriculture, warfare, rituals, and institutions. Here 
we are concerned with the agricultural section of Seshat.

At the most basic level, the database records the main carbo-
hydrate sources used by the population for subsistence. Our esti-
mating procedure focuses on the most important – focal – crop 
variety, or staple. These focal crops include wheat, rice, maize, 
yams, sweet potatoes, and breadfruit.

The next kind of information we need is on the proportion of 
potentially arable land that is under cultivation at any given 
moment in time, which provides the basis for estimating the crop-
ping coefficient. In continuously cultivated systems (no fallow) 
the cropping coefficient is 1. A two-field system, such as that 
broadly practiced in medieval Europe, in which crops are grown 
in one field, while the second lies fallow, has the cropping coef-
ficient of 0.5. It is possible for the cropping coefficient to be 
greater than 1 under the conditions of multi-cropping, in which 
land produces more than one crop per year. Conversely, under the 
conditions of swidden (also known as shifting, or slash-and-burn 
cultivation) only a small proportion of arable area is utilized in 
any given year. Where data on the length of cultivation and fallow 
are available, we use them to estimate the cropping coefficient. 
Otherwise, we use a generic estimate, obtained as follows. A 
review of 330 studies of shifting cultivation by Merz (2002) 
found that most fallow periods fall in the interval between 5 and 
30 years, with the modal period of 10 years. Assuming that each 
plot is cultivated for 3 years and is left fallow for the modal 
10 years implies a generic cropping coefficient for swidden (pro-
portion of arable land under cultivation) equal to 3/(10 + 3) = 0.23. 
This estimate falls in the middle of estimated fallowing coeffi-
cients used in the FAO-IIASA study of Global Agro-Ecological 
Zones (Tóth et al., 2012).

Two other agricultural technologies can have a large effect on 
crop productivities: irrigation and fertilization. The Seshat Data-
bank records information about the appearance and implementa-
tion of these practices in each NGA. However, in order to quantify 
how these management practices improve crop yields, it is neces-
sary to look to modern agricultural studies. Experimental studies 
from the field of agricultural science provide quantitative mea-
sures of how crop yields can be improved through the addition of 
fertilizer or water (Table 1).

Artificial selection

Wheat. Over the roughly 12,000 years since wheat, barley, and 
similar cereals were domesticated in the Fertile Crescent, the agri-
cultural yields of these grains changed dramatically (Araus et al., 
2007). Grain yields can be analyzed in terms of three primary 
yield components: number of plants per unit of cultivated area, 
number of kernels (grains) per plant, and mean kernel weight 
(Moragues et al., 2006). By measuring the dimensions of fossil-
ized grains, archaeologists are able to reconstruct the changes 
over time in the last component, kernel weight. Fortunately, ker-
nel weight is also one of the best predictors of the overall yield per 
unit area (Araus et al., 2014; Moragues et al., 2006), as shown in 
Figure 1. Although the relationship between kernel weight and 

yield is slightly curvilinear, in the historically relevant range of 
[0–30 mg] a linear approximation works as well, and we use the 
linear relationship for simplicity.

Figure 1b shows that kernel weight increased after domestica-
tion (c. 10,000 BCE) until roughly 6000 BCE. Subsequently, 
between 6000 BCE and 1500 CE, kernel weights showed no evi-
dence of systematic change, fluctuating around the level of 20 mg. 
Finally, the post-1500 period was another time of rapid artificial 
selection. We approximated this evolution of the domesticated 
cereals by a piece-wise linear function (see Figure 1b).

Table 1. Generic fertilization and irrigation coefficients used in this study. Coefficients calculated from agricultural experiments which 
compared treatment (fertilizing, irrigation) to a control that used traditional agricultural techniques.

Crop Practice Impact on yields Reference

Wheat Application of animal manure as fertilizer 65% improvement Zhao et al. (2009)
Wheat Irrigation 48% improvement Chapagain and Good (2015)
Rice Application of animal manure (bovine) 30% improvement (judged by tiller size) Sudarsono et al. (2014)
Rice Irrigation 30% improvement Aggarwal et al. (2008)
Maize Application of animal manure as fertilizer 78% improvement Celik et al. (2010)
Maize Irrigation 16% improvement Meng et al. (2013)

Figure 1. (a) Relationship between kernel weight and cereal 
yield for northern Mesopotamia and western Mediterranean 
(data sources: Araus et al., 2014; Moragues et al., 2006). Linear 
regression (solid line): Y = 0.038 W, R2 = 0.62, where Y is yield in t/ha/
year and W is kernel weight in mg. Curvilinear regression (dashed 
curve): Y = 0.016 W + 0.0008 W2, R2 = 0.74. (b) Change in the kernel 
weight with time since domestication, c. 10,000 BCE (data from 
Araus et al., 2007, 2014; Ferrio et al., 2006). “Wheat” includes 
several Triticum species (einkorn, emmer, and naked wheat). The 
stepped line traces out the relationship between kernel weight and 
time that we used in estimating past wheat productivities.
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Maize. A highly informative archaeological proxy for past maize 
yields is the mean corn cob length (Kirkby, 1973). Figure 2a 
shows that this relationship is curvilinear. Kirkby (1973) also esti-
mated how the mean corn cob length changed since domestica-
tion. We fitted this relationship with a second-degree polynomial 
(Figure 2b).

We estimated the effect of artificial selection on maize yields 
by combining the two fitted relationships. First we estimated the 
mean corn cob length (L) for each century after 5000 BCE, and 
then substituted the estimated L into the regression model for Y to 
calculate the artificial selection coefficient.

Rice. As with wheat and maize, we use rice grain size as a proxy 
for the effects of artificial selection. Broadly speaking, archaeo-
botanists recognize two main rice sub-species, Japonica (short/
medium grain) and Indica (long grain), which reflect different 
histories of domestication and hybridization. Grain breadth in 
both species has a positive relationship with time, with similar 
slopes. Here we focus on Japonica, because the data on grain size 
that we have so far been able to locate for Indica, has poor tempo-
ral coverage. Figure 3 shows the evolution of rice grain breadth 
between 6000 BCE, when the earliest field systems for rice culti-
vation appeared in China (Fuller et al., 2014), and the present. 
The pattern of change is similar to what we observe for wheat: 
initial increase, a pre-modern plateau, and then a second increase 
during the modern period.

Climate influences
We used a dynamic global vegetation and crop model, the Lund-
Potsdam-Jena managed land model (LPJmL) (Bondeau et al., 

2007), to estimate how agricultural productivity changed over 
time in different parts of the world in response to fluctuations of 
climate. The LPJmL was developed to predict future global vege-
tation patterns under possible climate change scenarios, but  
Oyebamiji et al. (2015) used this model to build an emulator of 
future crop yields, which we have simplified and reconfigured 
here as a palaeoemulator to look into the past. The palaeoemulator 
uses the statistical relationship between climate variables and crop 
yields to produce global maps of crop yields for 1000-year time 
slices going back in time from 2000 CE to 8000 BCE. The Oye-
bamiji et al. model can be configured to produce results for both 
rainfed and irrigated agricultural systems. We ran the palaeoemu-
lator for each timestep and extracted the “low input” rainfed results 
for each NGA. A more detailed description of the approach and 
illustration with two case study NGAs (Latium and the Oaxaca 
Valley) are in Collins et al. (2020). Notably, the palaeoemulator 
does not currently distinguish between soil types (e.g. loess vs clay 
soils), which may have been a factor affecting cultivar choice and 
cropping practices among early agrarian populations (Bakels, 
2013; Shennan, 2018); this is a ripe area for future expansion of 
the approach described here.

The crop yield emulator requires detailed information on 
past climate as input. We produced an estimate of climate 
through the Holocene using an emulator of the PLASIM-ENTS 
climate model (Holden et al., 2014). The paleoclimate emulator 
(Holden et al., 2015) uses dimensional reduction to derive 
global climate fields, and was constructed from an ensemble of 
simulations that were forced with constant atmospheric CO2 
but variable orbital forcing. Holocene climate time slices were 
calculated by applying the time-varying orbital configuration 
(Berger, 1978) to this emulator. To convert climate output from 
the PLASIM-ENTS paleoemulator (approximately 5°) to the 
high spatial resolution used by the LPJmL emulator (0.5°), the 
output was filtered through the ClimGen tool, which applies 
anomalies to observed high-resolution climatology (Osborn 
et al., 2016).

Historical yield estimates
We derived the historical yields used in this analysis from second-
ary source literature. In most literature, historical yields are esti-
mated using historical documentation or archaeological 
information (Goodchild, 2013; Slicher Van Bath, 1963) or are 
reconstructed through the modeling of environmental factors 
(Bakels, 2013; Lee et al., 2006). Other methodologies include 
reconstruction through archaeological proxies (Kirkby, 1973) and 
experimental archaeology (Reynolds, 1994). The relevant 

Figure 2. (a) Relationship between corn cob length and maize 
agricultural yield for Oaxaca, Mexico (data source: Kirkby, 1973). 
Regression: Y = -0.03 L + 0.013 L2, R2 = 0.80, where Y is maize 
yield in t/ha/year and L is corn cob length (cm). (b) Change in 
the mean corn cob length over time (Kirkby, 1973). Regression: 
L = 21.2 + 0.0031 (T–5000) + 9.9 × 10−8 (T − 5000)2, R2 = 0.99, where 
T is year BCE/CE.

Figure 3. Change in the mean grain breadth in Japonica rice (data 
sources: Fujita et al., 1984; Fuller et al., 2014; Kim et al., 2013). The 
stepped line traces the evolution of grain breadth over time, which 
we used in estimating past rice productivities.
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literature lacked estimates only for the Finger Lakes region. Our 
estimate for Finger Lakes is based on data for the Cahokia region 
(Mt.Pleasant, 2015) but accounts for differences in climate 
between the two locations. Some of the underlying data were col-
lected as part of previous research on carrying capacity by Seshat: 
Global History Databank team (Currie et al., 2015), expanded in 
the ensuing years through our ongoing work.

The estimation procedure
The procedure for estimating the yield trajectory in each NGA 
works as follows (see Figure 4). First, the program reads from the 
file the identity of the focal crop. Using Seshat data, the program 
constructs a sequence of cropping coefficients for each century 
between 10,000 BCE and 2000 CE in the NGA. For example, if 
Seshat data indicates that between 1245 and 1634 CE agriculture 
in the NGA was based on a two-field cropping system, then years 
1300, 1400, and 1600 are assigned values of 0.5. For periods 
when agriculture was not practiced in the NGA, we assign the 
value of 0.

The program next constructs fertilizer, irrigation, and artificial 
selection coefficients in a similar way, using the values appropri-
ate for the NGA’s focal crop (see Table 1). Because palaeoemula-
tor data are resolved at 1000-year steps, we need to interpolate 
them for the century step used in our procedure (we used linear 
interpolation). For each century mark in the NGA sequence these 
coefficients are multiplied together to produce the Relative Yield 
Coefficient (RYC).

The final step is to scale the RYC using the historical yield 
data for the NGA coded in Seshat. The scaling coefficient is esti-
mated by fitting RYC on historical yields using a linear regression 
with no intercept (because RYC = 0 should map onto historical 
yield = 0). The estimation procedure was implemented in R (ver-
sion 3.6.3) and the script, as well as the data files it uses, are 
published as Supplemental Online Materials (https://osf.io/
kjw8c/).

Comparisons between estimates and independent 
data
The estimation procedure requires at least one estimate of histori-
cal yield to translate RYCs into estimated yield in tons/ha. For the 
NGAs where we have historical yield estimates for more than one 
time period, we used the earliest one to scale the RYC, and the 
subsequent ones (not used in generating estimates) as tests of the 
predicted yield trajectory. An additional comparison is provided 
by comparing the end point of the Estimated Yield trajectory (at 
year 1900) to the FAO data on the modern yields in the country 
that encompasses the NGA.

Results and discussion
Testing the approach with historical yield estimates
As we stated in the Methods, to test the approach we used one (the 
earliest) historical yield estimate in an NGA to translate the Rela-
tive Yield Coefficient into absolute annual yields in t/ha. Addi-
tional yield estimates, reported by archaeologists or historians, 
then serve as an empirical check of the estimation procedure. Fig-
ure 5 shows trajectories for eight NGAs for which we have such 
multiple independent estimates. We now discuss each of these 
trajectories in some detail.

Latium. We are lucky to have multiple estimates for this well-
studied region, covering the development of Italian agriculture 
over the past 3000 years. The early Iron Age estimate of c. 0.5 met-
ric tons of wheat per hectare was used to anchor the trajectory. 
Historical estimates from different authors for the Roman Empire 
range over a broad interval between 0.5 and 2 t/ha (Goodchild, 
2007: Appendix V). Our estimate (1 t/ha) underestimates the 
median (1.5 t/ha). Conversely, the estimates of the productivity of 
Medieval agriculture in Italy from the literature (just under 0.5 t/ha 
in c.1000 CE) are below our estimates. The trajectory also some-
what overestimates Early Modern yields, and then gets on track 
with the data during the 19th century. The trajectory endpoint of 
1.75 t/ha in 1900 is just below the average wheat productivity in 
Italy during the 1960s, as suggested by the FAO data. The decline 
in historical productivity estimates between the Roman Optimum 
and Early Modern Periods is probably driven, at least in part, by 
the worsening of the climate (Harper, 2017; McCormick et al., 
2012). Unfortunately, the temporal resolution of the climatic data 
we used (at 1000 years) is insufficient to capture this effect.

Upper Egypt. The estimated trajectory appears to capture accu-
rately the two transitions in the history of Egyptian agriculture: 
(1) the doubling of yields from the early Neolithic to the Phara-
onic period and (2) another doubling during the Modern period. 
The 1900 end point is right on top of the average productivity of 
Egyptian agriculture estimated from the FAO data for 1965. The 
remarkable stability of Egyptian agriculture for more than 
4000 years in between these two transitions is probably due to the 
effect of the Nile, whose annual floods provide both irrigation and 
fertilization (Allen, 1997).

Paris Basin. As with Italy, we are lucky to have multiple literature 
estimates covering the four millennia between the early Neolithic 
and the present. Again, our trajectory overestimates the productiv-
ity of the Medieval French agriculture, but then gets on track by 
the Early Modern Period. As we noted above for Latium, this 
decline could have resulted from the worsening climate. However, 
another consideration is the switch to the three-field rotation sys-
tem, which took place at about this time (Bakels, 2013; Wickham, 
2005). Lower wheat yields, thus, could be compensated by pulses 
– a hypothesis that would be worth exploring in future research. 
The 1900 endpoint, on the other hand, is very close to the FAO-
1965 estimate, which preceded the dramatic productivity increase 
in modern French agriculture during the second half of the 20th 
century.

Susiana. The estimated trajectory is anchored by the estimate of 
0.6–1.0 t/ha for winter barley during the Ur III period. The next 
estimate, 1.33–1.46 t/ha, is by Robert McC. Adams for “primitive 
agricultural technologies in the Diyala region in the 1950s” 
(Adams, 1965: 17). Although Susiana today is part of Iran, we 
compare this NGA’s trajectory to the FAO data for Iraq, since the 
source of our estimates is derived from Mesopotamia. The trajec-
tory shows a very good fit with this second estimate, but we really 

Figure 4. Flowchart of inputs and calculations needed to estimate 
the agricultural yields in each NGA (Natural Geographic Area) as 
they change over time (at 100-year steps).

https://osf.io/kjw8c/
https://osf.io/kjw8c/
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need more historical data to test this important region more 
properly.

Middle Yellow River Valley. The trajectory for China is anchored in 
the estimate of 0.26 t/ha for millet during the early Neolithic period 
(note the broad temporal range indicated by the horizontal red line). 
The estimated trajectory is very close to the next estimate (1 t/ha for 
the early Han Dynasty). Historical yield estimates for the early 
Modern and Modern periods exhibit a great degree of variance, 
with our trajectory passing through the higher end. Similarly, the 
1900 endpoint is slightly above the 1965 FAO estimate.

Cambodian Basin. The estimated yield trajectory is anchored by a 
literature estimate for the peak of Angkor Empire, 1.5 tons of rice 
per hectare. The next historical estimate, 2.5 t/ha in 1900 is right 
on the trajectory. The 1965 FAO estimate, however, is much 
lower, perhaps reflecting the observation that the Cambodian 
Basin is a high productivity area within Cambodia, due to plenti-
ful water provided by the seasonal inundation of Tonle Sap lake.

Valley of Oaxaca. The trajectory is anchored by an estimated yield 
of maize agriculture, 0.5–0.6 t/ha, during the early Monte Alban I 
period. The subsequent continuous improvement of maize yields, 
due to its remarkable response to artificial selection (see Figure 2) 
is well-captured. However, the 1900 endpoint overpredicts the 
FAO 1965 estimate, and the overall productivity of Mexican agri-
culture catches up with the predicted level only by 2000.

Kansai. Japan’s trajectory, anchored by an estimate of 1.3 t/ha for 
1100–1300 CE, does a good job for the Early Modern period, but 
underpredicts the rapid improvement of Japanese agriculture dur-
ing the modern period.

Comparison of historical and modern yields
Overall, these eight case-studies covering all major world regions 
(Europe, Asia, Africa, North and South America, and Oceania) for 
the three major world crops (wheat, rice, maize) suggest that the 
procedure that we describe in this article results in reasonable 

Figure 5. Trajectories of estimated agricultural yields (black curves) in a selection of NGAs, compared to historical yield estimates from 
the literature (red symbols: downward and upward pointing triangles indicate the upper and lower ranges of reported productivities, 
crosses indicate the median, and the horizontal line is the extent of the temporal period to which the estimate applies). The blue diamonds 
are productivity estimates calculated from the FAO data for the modern countries encompassing the NGAs (an average of three periods: 
1960–1970, 1995–2005, and 2010–2016).
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estimates. Historical estimates predating the Green Revolution are 
particularly useful in anchoring and validating the Estimated Yield 
trajectories, because the timing of the onset, and of the improve-
ment rate associated with the Green Revolution is highly variable 
across modern countries. Nevertheless, it is instructive to compare 
the most recent premodern Seshat estimate (for 1500) to the pro-
ductivities of the modern countries, reported by FAO (Figure 6). 
This comparison was done on all NGAs.

On one hand, we observe a strong correlation between Ses-
hat-1500 and FAO-2000 values (R2 = 0.70, corresponding to a cor-
relation coefficient of 0.84). Modern yields are much higher than the 
Seshat estimates (on average, 3.5 times higher), but this is as 
expected, given the dramatic improvements in agricultural technol-
ogy in the second half of the 20th century. On the other hand, there 
is enough scatter to indicate that modern yields could be poor indi-
cators, even in relative terms, of pre-modern productivities in some 
world regions. Consider the cluster of three NGAs/countries, for 
which the pre-modern Seshat estimates lie well above the fitted line: 
Oaxaca (MX), Cambodian Basin (KH), and Sogdiana (UZ). These 
three contemporary countries are all relatively under-developed and 
over-populated. Underdevelopment means that they do not use the 
most productive high yielding (but also high input) agro-technolo-
gies. Overpopulation means that crops are often grown in marginal 
areas, which depresses average yields for the whole country. Com-
pare, for example, Cambodian and Paris Basins. Around 1500 the 
productivities in both areas (supported by historical yield estimates) 
were c.1.5 t/ha/year (in rice and wheat, respectively). Yet by 2000 
French agriculture, which is one of the most advanced in the world, 
generated average yields of 7 t/ha, while the average yield in Cam-
bodia was still 2 t/ha (improving to 3 t/ha by 2015). A 20th century 
estimate of rice productivity for the flood-recession area is 2.5 t/ha, 
reflecting better suitability of such land for agriculture, compared to 
the rest of Cambodia. Our overall conclusion from this comparison, 
then, is that modern productivities can be a poor guide to the produc-
tivities in the past, even when used as relative indicators. This under-
scores the importance of developing independent, dynamic models 
of past productivities using inputs (ecological, climatological, tech-
nological, and societal) from historical societies themselves, rather 

than relying on mechanical projection from present circumstances 
to the past.

Relative strength of input factors
In this section we ask the following question: how important are 
the relative contributions of the various inputs that we have quan-
tified (climate, artificial selection, irrigation, fertilizing, and crop-
ping coefficients) to the model output, estimated yield? We 
addressed this question in two ways. First, we regressed the esti-
mated yields on input factors. Table 2 (the column Estimate) 
reports the standardized regression coefficients associated with 
each factor (standardized coefficients, or beta weights, are the 
estimates resulting from a regression analysis in which the under-
lying data have been standardized so that the variances of depen-
dent and independent variables are equal to 1.) This analysis 
indicates that the greatest effects are due to artificial selection and 
cropping coefficients. In contrast, paleoclimate and fertilizer 
coefficients have a much smaller effect on the estimated yields. 
The effect of irrigation is very close to zero.

The second approach is to calculate the estimated yields by 
omitting one of the input factors and determine how much this 
omission affects the estimates. Table 2 (Difference %) suggests, 
again, that artificial selection and cropping system are the most 

Figure 6. Relationship between estimated yields in Seshat NGAs in 1500 CE (calculated in this study) and the average yields in the 
modern country containing the NGA in 2000 CE (FAO data). Dashed line is the linear regression (R2 = 0.69). Two-letter codes refer to ISO 
abbreviations for modern countries, with the exception of HI (Hawaii), MO (Missouri for Cahokia), NY (New York for Finger Lakes), and YK 
(Yakutia).

Table 2. Relative contributions of various factors to estimated 
yields. Estimate: the standardized regression coefficients. Difference 
(%): mean absolute deviation between the estimates using all factors 
and estimates omitting one factor at a time, expressed in percent of 
all-factor estimates.

Estimate Difference (%)

Paleoclimate 0.225 9.98
Artselect 0.700 214.88
Irrigation -0.024 10.03
Fertilizer 0.160 14.79
Cropping 0.439 144.12
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important input factors – omitting either of these processes from 
estimation would result in gross errors of more than 100%. In 
contrast, the omission of any of the other three factors results in 
errors of only 10%–15%; in other words, an order of magnitude 
difference.

This analysis, thus, suggests that, in order to further refine 
yield estimates for past societies, most effort should go in obtain-
ing better data on the effects of artificial selection and cropping 
systems on crop yields. However, one important caveat is that the 
inclusion of shorter timescale variability would be expected to 
alter the relative importance of different factors, and even for the 
long-timescale changes considered here, our estimates, in particu-
lar of climate influence, require much more work, as we discuss 
in the next subsection.

Comparison to other climate models
The climate emulator used here is derived from PLASIM-ENTS 
(Holden et al., 2014), a 3D model of the atmosphere coupled to 
slab ocean, slab sea-ice, and dynamic vegetation models. This cli-
mate model was used because earlier work has already addressed 
the PLASIM-ENTSem-ClimGEN-LPJmLem coupling (Warren 
et al., 2019), which converts seasonal climate outputs from an 
emulator of PLASIM-ENTS to the high spatial resolution and 
monthly variables (temperature, precipitation, cloud cover, and 
wet-day frequency) required by the crop emulator (Oyebamiji 
et al., 2015). The principal weaknesses of this particular climate 
model emulator relative to some more recently published paleo-
climate model products (Fordham et al., 2017; Holden et al., 
2019) are the simplified ocean and sea-ice dynamics and bound-
ary conditions (we here consider only orbital forcing) and the 
neglect of sub-millennial variability (Fordham et al., 2017).

We validate aspects of our model in Figure 7, which compares 
the emulated spatial pattern of mid-Holocene precipitation in north-
ern summer with (i) PALEO-PGEM (Holden et al., 2019), an emu-
lator of the intermediate complexity coupled atmosphere-ocean 
GCM PLASIM-GENIE (Holden et al., 2018), (ii) Paleoview 

(Fordham et al., 2017), derived from a transient simulation of the 
Community Climate System Model version 3 (Liu et al., 2009), and 
(iii) the mean and variance of the Paleoclimate Model Inter-com-
parison Project PMIP2 OAV (coupled ocean-atmosphere-vegeta-
tion) ensemble (Braconnot et al., 2007). We choose the 
mid-Holocene (c. 4000 BCE) as it is a well-studied warm interval, 
with climate quite different from today due to the different orbital 
forcing.

As Figure 7 shows, our climate emulator captures the large-
scale dynamics of the more complex models, most notably the 
strengthening of the Asian monsoon system and the increased pre-
cipitation in the Sahel. The spatial patterns of change lie within the 
uncertainty envelope (standard deviation) displayed by the PMIP2 
ensemble. Given that our results are relatively insensitive to cli-
mate forcing, we expect that using an existing higher-complexity 
climate model would not greatly affect our predicted yield trajec-
tories, which are dominated by artificial selection and cropping. 
However, this hypothesis needs to be tested directly, and we plan 
to do this in future work using a more complex climate model and 
crop emulators targeted specifically at paleoclimate states.

Conclusion: Limitations of this 
study and prospects for the future
Estimating agricultural productivity on a global scale over long 
periods of time, going back all the way to the beginnings of agri-
culture, is not an easy task. Here we proposed and implemented a 
procedure that systematically incorporates various factors that 
affect agricultural yields in different world regions and different 
time periods. Any such scheme must be based on an explicit 
model, which means making simplifying assumptions. In particu-
lar, we assumed that we can use a single agricultural crop, a major 
carbohydrate source for populations inhabiting each NGA. Previ-
ous studies focusing on maize agriculture in Mexico and wheat in 
Italy suggest that the resulting approximations are not too far from 
reality (Nicholas, 1989; Scheidel, 2001; Turchin and Nefedov, 

Figure 7. Comparison of June to August averaged precipitation between the climate model used in this study (Seshat) with other climate 
models (see the text for explanation).
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2009). However, this assumption needs to be further tested in addi-
tional world regions.

Next, due to limitations of historical data on how various cul-
tivation practices (fallowing, irrigation, and fertilization) affected 
yields in the past, our approach relies heavily on generic coeffi-
cients derived from modern studies. As we saw in Results and 
Discussion, implementation of these practices has a substantial 
effect on the resulting trajectory of estimated yields. While using 
generic coefficients is a reasonable first step (and certainly better 
than not taking these processes into account), what is needed next 
is an investigation that will allow us to tailor this approach to 
individual Seshat NGAs, with their different climates and physi-
cal environments.

Yet another limitation of the present study regards the way in 
which climate effects are currently handled. A millennium-long 
time step is far too long for many of the questions that we want to 
ask about the evolution of complex societies and, particularly, for 
the periodic breakdowns that they go through. A time step of 1 
century, or, better, of a decade, would be much more informative. 
This is a high priority research direction for the Seshat project.

Finally, the estimation procedure used in this article calculates 
the Relative Yield Coefficient by combining the input coefficients 
multiplicatively. This approach ignores possible interaction 
effects between different processes that affect crop yields. For 
example, irrigation can ameliorate the effect of climate drying, 
while not being necessary as climate becomes wetter. Certain 
technological advances can alter the productivity of areas, for 
instance the introduction of the heavy plow in Europe allowed 
farmers to bring previously marginal clay soils into productive 
cultivation. This is another avenue for future investigation.

Despite these caveats, we argue that a quantitative approach 
that explicitly incorporates various influences shaping agricul-
tural yields in the past represents an important step forward in 
enabling us to understand some of the key processes underlying 
the rise and fall of historical societies. A significant advantage of 
the proposed quantitative procedure is that it is modular. This 
means that different modules (processes affecting yields, such as 
climate, artificial selection, and cultivating practices) can be 
improved one by one, resulting in better overall estimates (not-
withstanding the caveat above on interactions). For example, 
once we have higher resolution climate data, we can simply sub-
stitute our crude interpolated series with a more detailed one, 
which immediately generates better estimates. Finer-grain cli-
matic data will enable researchers to investigate resilience of agri-
cultural systems to major disturbances, a topic of great interest, 
but which was beyond the scope of the present article.

The R-scripts together with the data on which they operate have 
been made publicly available at this URL: https://osf.io/kjw8c/. We 
invite other investigators to join us in exploring the implications of 
the dynamics of agricultural productivities in the past, by bringing 
additional data and refining the overall estimation procedure, as 
well as by analyzing how fluctuations in their productive bases 
affected the rise and demise of past civilizations.
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